
Methods

Taxonomic classifiers
Creating customised taxonomic classifiers for bioinformatic

pipelines based on publicly available gene-reference databases

Ása Johannesen
Ása Jacobsen

8. December 2023

Fiskaaling rit 2023-14

Fiskaaling P/F
við Áir, FO-430 Hvalvík, Føroyar (Faroe Islands)

Tlf. (+298) 474747, fiskaaling@fiskaaling.fo, www.fiskaaling.fo

Fiskaaling P/F
Methods

við Áir
FO-430 Hvalvík
Føroyar (Faroe Islands)

Heiti: Taxonomic classifiers

Tlf. (Phone) (+298) 474747
Fax (+298) 474748
E-mail:fiskaaling@fiskaaling.fo
www.fiskaaling.fo

Høvundar: Ása Johannesen
Ása Jacobsen

Status: Open Frágr.nr.:

2023-14
Verkætlan: Pipeline v2

Dato:

8. December
2023

Tal av síðum:

20 Ábyrgdarhavi: Ása Jacobsen

Góðkent: Amanda Vang Undirritan:

Samandráttur:

This documents the process of downloading and preparing reference sequence data from
publicly available databases for constructing classifiers for assigning taxonomy to barcode
sequence data. Here code is collated with additional original code for creating classifiers for
various taxonomic groups, using different gene regions and based on reference sequences
from six different genetic databases. The document is designed to be used as a modifiable
general pipeline guide with all the necessary code to get started on constructing your own
customised reference database.

Leitiorð:

Bioinformatics, pipeline, classifier, Qiime2, eDNA

Fyrivarni:

Materials and information provided in this report are verified with the limitations described in
the report. Authors and disseminators of the reported material should not be held accountable for
any decisions or conclusions based on the materials and information provided in this report. The
contents of this report can only be used with proper citation.

Contents

1 Introduction 2

2 Setup 2

3 Silva reference database 3
3.1 Downloading reference data . 4

4 NCBI GenBank reference database 4
4.1 Downloading the data . 4
4.2 Filtration and cleanup of reference data 5

5 MIDORI2 reference database 8
5.1 Downloading reference data . 9
5.2 Using the online classifier . 9

6 Mare-MAGE reference database 10
6.1 Downloading reference data . 10

7 PR2 reference database 10
7.1 Downloading reference data . 11

8 BOLD reference database 11
8.1 Downloading reference data . 12

9 Reference data filtration and cleanup 15

10 Constructing the classifier 17
10.1 Constructing a weighted classifier . 18

References 19

1

2. Setup

1 Introduction
This report is constructed as a handbook describing the process of making customised
taxonomic classifiers based on a selection of gen-reference databases focusing on various
taxonomic groups and gene regions. The reference databases are very different, some
allowing for analysis of samples on websites and some require downloading and then
building a classifier. Below are descriptions of the databases that will be explored in this
report and examples are made illustrating different approaches and purposes. All the
databases are described to the point where a trained classifier has been constructed, ready
for use with your own data.
The aim of this report is to provide a useful guide to building various customized classifiers.
Although there are many other available examples of building classifiers, it is a laborious
process to acquire enough knowledge to being able to making your own customized
classifiers. This is mainly due to the information needed being scattered across various
webpages, forums, etc.. In this process, we have been very aware of citing the origin of
the code compiled and if any error is made in this respect, it is unintentional.
The platform used here is Qiime21 which also includes terminal or Python code. All code
chunks are annotated and explanations are provided to allow users to adapt according to
their needs. The code is available in Jupyter Notebooks on GitHub (in prep). Further
assistance can also be found on the Qiime2 website, which contains various guidelines and
tutorials as well as a friendly and helpful forum.

2 Setup
This handbook was constructed using Qiime2 version 2021.2.0 (Bolyen et al. 2019) running
with Jupyter version 3.6.15 (Van Rossum and Drake Jr 1995). Packages and plugins used
in this handbook are as follows:

• Qiime2
– RESCRIPt (Robeson et al. 2020)
– q2-feature-table (Robeson et al. 2020)
– q2-feature-classifier (Bokulich et al. 2018)
– q2-clawback (Kaehler et al. 2019)

• Python
– Pandas (Pandas development team 2020)

Since the code was written in Jupyter Notebooks, the Qiime2 code snippets are preceeded
with an ’!’ in order to run in JupyterNotebook. This would not be necessary if running
from the terminal.

Mostly, when the user of this handbook should input their own file names or variables,
we have replaced our own with some filler text surrounded by less than and greater than
symbols ("<your file name here>"). Without replacing these with a filename or other
relevant input, the code will not run. Some times, we have not removed our own input.
This may be for illustrative purposes, so that the user understands how the input ought
to be formatted. However, there are also some instances where for example a whole
pipeline with very specifically named files are used in several subsequent code snippets.

1www.qiime2.org

Síða 2 av 20 Taxonomic classifiers

www.qiime2.org

The Python for loops described in the NCBI chapter are a good example of this. That
chapter describes how to download data within a for loop with some very specific filters
and in the code, the files are named for the taxid that was downloaded and the type of
data they are. This file name designation is then used in all the subsequent steps.

Figure 1: Structure of handbook sections. Most reference databases can be processed
using this flow, though data from NCBI is processed slightly differently. In the case of
data from NCBI, the reference data filtration and cleanup is performed on several files
simultaneously as described in the NCBI chapter, so the chapter "Reference data filtration
and cleanup" can most likely be skipped.

3 Silva reference database

The Silva database contains sequence and taxonomy data for small subunit (16S and 18S)
and large subunit (23S and 28S) ribosomal RNA for Bacteria, Archaea and Eukaryota
(Quast et al. 2013).

It is possible to download pre-trained classifiers or to train your own classifier from the
data available on the Silva website2. As an example, we will explore the 16S and 18S
datasets.

2arb-silva.de

Pipeline v2 Síða 3 av 20

https://www.arb-silva.de

4. NCBI GenBank reference database

3.1 Downloading reference data
This will download the currently most recent Silva release and format it for use in Qiime2.

[]: !qiime rescript get-silva-data \
--p-version '138.1' \
--p-target 'SSURef_NR99' \
--o-silva-sequences silva-138.1-ssu-nr99-rna-seqs.qza \
--o-silva-taxonomy silva-138.1-ssu-nr99-tax.qza

The downloaded sequences are RNA, so you can transcribe them to DNA using the
following.

[]: !qiime rescript reverse-transcribe \
--i-rna-sequences silva-138.1-ssu-nr99-rna-seqs.qza \
--o-dna-sequences silva-138.1-ssu-nr99-seqs.qza

4 NCBI GenBank reference database
NCBI Genbank is the largest and most comprehensive database including sequences of
any kind. It is possible to download data based on taxonomic groups, primers, projects
and many other criteria. (Benson et al. 2013)

In this chapter we describe how to use Qiime2 to download reference sequences and
taxonomy for your taxa and gene region of choice. We will demonstrate how this is done
using the COI region and marine fish taxa. You can find taxid numbers on the NCBI
website3 by searching your taxon and clicking on it in the results list.

Due to the high demand on NBCIs servers, it is advisable to download the data outside
of US working hours and in manageable chunks. After downloading, we will demonstrate
how to filter the data and to construct a classifier.

4.1 Downloading the data
Choose your working directory

[1]: import os
os.chdir(<your path>)

Create a list of the taxids that you want to download. A few taxids are inserted for
illustrative purposes.

[2]: taxgroups = ["txid32443[ORGN]","txid7777[ORGN]","txid117565[ORGN]",
"txid117569[ORGN]"]

3ncbi.nlm.nih.gov/taxonomy

Síða 4 av 20 Taxonomic classifiers

https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy

4.2. Filtration and cleanup of reference data

Create a boolean variable (theorsandnots) to ensure that the correct gene region is
downloaded in addition to other potential filtration terms. Here we download COI data
and exclude unclassified, environmental, unknown, and uncultivated sequences.

[3]: theorsandnots = "AND (cytochrome c oxidase subunit 1[Title] OR␣
↪→cytochrome c oxidase subunit I[Title] OR cytochrome oxidase subunit␣
↪→1[Title] OR cytochrome oxidase subunit I[Title] OR COX1[Title] OR␣
↪→CO1[Title] OR COI[Title]) NOT (unclassified OR environmental OR␣
↪→unknown OR uncultivated)"

Create a for loop in order to download the individual taxonomic groups that were defined
in the list above.

• therequest is a variable containing the taxonomic groups and the boolean filtration
and will be used in the Qiime2 call

• groupname splits the "group" variable so that the first part is the required taxid,
which is used for naming output files

• refseqs is the output name for reference sequences using the first part of the group
name - that is the taxid.

• taxonomy is the output name for the taxonomy files defined in the same way as
above

In this download request, we specify all available ranks for the taxonomy. This may not
be necessary depending on your needs.

[4]: for group in taxgroups:
therequest = f'{group} {theorsandnots}'
groupname = group.split("[O")
refseqs = f'{groupname[0]}-refseqs.qza'
taxonomy = f'{groupname[0]}-taxonomy.qza'
!qiime rescript get-ncbi-data \

--p-query "$therequest" \
--p-n-jobs <define number of cores to use> \
--p-ranks kingdom subkingdom superphylum phylum subphylum␣

↪→infraphylum superclass class subclass infraclass superorder order␣
↪→suborder infraorder superfamily family subfamily genus species \

--o-sequences $refseqs \
--o-taxonomy $taxonomy

4.2 Filtration and cleanup of reference data
This section assumes you downloaded your NCBI data in several small downloads and
that you need to process more than one file of representative sequences and one taxonomy
file. If you only have one file of each, you can skip the Python for loops and simplify your
Qiime2 calls.
Define the path to your downloads.

[2]: import os
dir = "<path to your working directory>"

Pipeline v2 Síða 5 av 20

4. NCBI GenBank reference database

Create lists of reference sequence files and taxonomy files. The list of reference sequence
files is used downstream. You can print the lists if you want to check that the pattern is
working as intended. If you have named your files differently, so that the reference sequence
files do not contain "refseqs" and the taxonomy files do not contain "taxonomy", you
should put another suitable identifying string in "sequence_pattern" and "tax_pattern"

[3]: sequence_pattern = "refseqs"
tax_pattern = "taxonomy"
sequence_files = [f for f in os.listdir(dir) if sequence_pattern in f]
tax_files = [f for f in os.listdir(dir) if tax_pattern in f]

print(sequence_files)
print(tax_files)

Iterate through the list of reference sequence files and dereplicate them. Output files are
given the "derep" addition so that it is clear that they are dereplicated files. You can
define the number of threads to use based on your system. There are several modes to
choose from and here we use "uniq". This mode keeps all unique sequences including
identical ones if they have different taxonomies.

[5]: for group in sequence_files:
taxid = group.split("-ref")
derep_refseqs = f'{dir}/{taxid[0]}-derep-refseq.qza'
derep_taxonomy = f'{dir}/{taxid[0]}-derep-taxonomy.qza'
taxname = f'{dir}/{taxid[0]}-taxonomy.qza'
!qiime rescript dereplicate \

--i-sequences $dir/$group \
--i-taxa $taxname \
--p-mode 'uniq' \
--p-threads <define number of threads to use> \
--o-dereplicated-sequences $derep_refseqs \
--o-dereplicated-taxa $derep_taxonomy

Define a list of dereplicated reference sequence files for further filtering.

[6]: derep_pattern = "derep-refseq"
derep_files = [f for f in os.listdir(dir) if derep_pattern in f]
print(derep_files)

Extract and filter the sequences based on your primers to reduce the data that you will
use to build the classifier. This is time consuming and you can define the number of
threads to use based on your system.

[8]: for group in derep_files:
taxid = group.split("-derep")
extracted_refseqs = f'{taxid[0]}-extracted-refseq.qza'
!qiime feature-classifier extract-reads \

--i-sequences $group \
--p-f-primer <your forward primer sequence> \
--p-r-primer <your reverse primer sequence> \

Síða 6 av 20 Taxonomic classifiers

4.2. Filtration and cleanup of reference data

--p-n-jobs <define number of threads to use> \
--o-reads $extracted_refseqs

Create a list of files containing the extracted and filtered reference sequences.

[11]: extracted_pattern = "extracted-refseq"
extracted_files = [f for f in os.listdir(dir) if extracted_pattern in␣

↪→f]
print(extracted_files)

Filter sequences based on number of degenerates and homopolymer length.

[10]: for group in extracted_files:
taxid = group.split("-extract")
culled_refseqs = f'{taxid[0]}-culled-refseq.qza'
!qiime rescript cull-seqs \

--i-sequences $group \
--p-num-degenerates <number of degenerates> \
--p-homopolymer-length < homopolymer length> \
--o-clean-sequences $culled_refseqs

Create a list of culled files.

[12]: culled_pattern = "culled-refseq"
culled_files = [f for f in os.listdir(dir) if culled_pattern in f]
print(culled_files)

Filter the culled files based on sequence length.

[13]: for group in culled_files:
taxid = group.split("-culled")
filtered_refseqs = f'{taxid[0]}-filtered-refseq.qza'
discarded_refseqs = f'{taxid[0]}-discarded-refseq.qza'
!qiime rescript filter-seqs-length \

--i-sequences $group \
--p-global-min <your global minimum> \
--o-filtered-seqs $filtered_refseqs \
--o-discarded-seqs $discarded_refseqs

Create list of filtered files formatted as string.

[14]: filtered_pattern = "filtered-refseq"
filtered_files = [f for f in os.listdir(dir) if filtered_pattern in f]
files_to_merge = " ".join(filtered_files)
print(files_to_merge)

Merge your cleaned and filtered reference sequences using the "feature-table" "merge-seqs"
command. Note that the input data can not be a list, which is why the above code is
constructed the way it is.

Pipeline v2 Síða 7 av 20

5. MIDORI2 reference database

[15]: !qiime feature-table merge-seqs \
--i-data $files_to_merge \
--o-merged-data <name your merged sequences output .qza file>

Create a list of your dereplicated taxonomy files.

[16]: derep_taxa_pattern = "derep-taxonomy"
derep_taxa_files = [f for f in os.listdir(dir) if derep_taxa_pattern␣

↪→in f]
taxa_files_to_merge = " ".join(derep_taxa_files)
print(taxa_files_to_merge)

Merge your taxonomy files.

[17]: !qiime feature-table merge-taxa \
--i-data $taxa_files_to_merge \
--o-merged-data <name your merged taxonomy .qza file>

Dereplicate your taxonomy and reference sequences again after merging.

[18]: !qiime rescript dereplicate \
--i-sequences <your merged sequence file> \
--i-taxa <your merged taxonomy file> \
--p-mode 'uniq' \
--p-threads <desired number of threads> \
--o-dereplicated-sequences <your final reference sequence .qza file> \
--o-dereplicated-taxa <name your final taxonomy .qza file>

5 MIDORI2 reference database

The MIDORI2 database (Leray, Knowlton, and Machida 2022) consists of eukaryota
mitochondrial DNA and can be used either by downloading the database or by uploading
samples to their website4.

In this chapter, we describe how the MIDORI2 reference database is used both for
building a customised classifier as well as how to use their online classifier. The website
functionality is restricted to up to 10,000 sequences. Upon upload, users are given a
choice of three different classifiers (programs) and in this report, results from the RDP
classifier are used.

MIDORI2 originally included only Metazoan data, but has since expanded to include all
eukaryotes. We have applied MIDORI2 to building a classifier for marine invertebrates by
filtering as described below.

4reference-midori.info

Síða 8 av 20 Taxonomic classifiers

https://www.reference-midori.info

5.1. Downloading reference data

5.1 Downloading reference data
Begin by downloading the appropriate database files. This can be found here5. Here we
use the files formatted for QIIME, selecting the newest species level uniq data set. From
that list, we download the FASTA files and the taxon file for COI primers. The database
contains different files for different target genes.
Before constructing your classifier, it might be a good idea to filter the downloaded
data based on the taxa of interest. This can be done using the perl script available for
download from the MIDORI2 download page mentioned above. There is also a manual
available for download. Bear in mind that not all taxonomic levels are included in the
downloadable taxonomy, so when constructing the target list, ensure that you are using
taxa that also exist in the taxon file.

Navigate to your working directory.

[2]: import os
os.chdir(<your path>)

Import the downloaded FASTA and taxon files into Qiime2 to create the qza files that
Qiime2 works with. Once you have successfully created a .qza for both your reference
sequences and your taxonomy, you are ready to start working on cleaning up your reference
data before building your classifier.

[7]: !qiime tools import \
--type 'FeatureData[Taxonomy]' \
--input-path <your downloaded and perl filtrated .taxon file> \
--input-format HeaderlessTSVTaxonomyFormat \
--output-path <name your .qza taxon file>

[8]: !qiime tools import \
--type 'FeatureData[Sequence]' \
--input-path <your downloaded and perl filtrated .fasta file> \
--output-path <name your .qza refseq file>

5.2 Using the online classifier
Navigate to their server6. From there you can upload your representative sequences up
to a maximum of 10,000 sequences. You can select between three different classifiers or
programs to use for your analysis. Choose between unique and longest sequences and
the gene region. Set the confidence level and the format of your output. The output will
be a .zip folder with .txt files, one containing the Feature IDs with the corresponding
taxonomy and another with taxid, corresponding taxonomy, and the number of reads.

5reference-midori.info/download.php
6reference-midori.info/server.php

Pipeline v2 Síða 9 av 20

https://www.reference-midori.info/download.php
https://www.reference-midori.info/server.php

7. PR2 reference database

6 Mare-MAGE reference database
This database is developed specifically for fish and is hosted by the Thunen Institute of
Fisheries Ecology at Bremerhaven. It contains data for for the 12s and COI gene regions
that can be downloaded in FASTA format as well as taxonomy files from the Mare-MAGE
website7.
In this chapter, we describe how the Mare-MAGE reference database is used.

6.1 Downloading reference data
Begin by choosing the dataset that you want. You can choose from 12S and COI and also
level of confidence and whether you want complete gene sequences.
You can download the data from their website mentioned above.
There is a Qiime2 tutorial on the Mare_MAGE website, which describes the classifier
building that we also describe here, but beware that some of their fasta files may not be
correctly formatted for Qiime2. We found that the COI90 fasta file contained lower case
letters and spaces, which are not accepted in the Qiime2 import. If that is the case for
you, you can convert the files to upper case using sed or awk. Here is an example of how
it might be done using awk:

[]: awk 'BEGIN{FS=" "}{if(!/>/){print toupper($0)}else{print $1}}' in.fna
> out.fna

Import your downloaded files into Qiime2. Here shown for references sequences (.fasta)
first and then for taxonomy.

[]: !qiime tools import \
--type FeatureData[Sequence] \
--input-path <your downloaded Mare-MAGE .fasta file> \
--output-path <name your reference sequence .qza file>

[]: !qiime tools import \
--type FeatureData[Taxonomy] \
--input-path <your downloaded Mare-MAGE taxonomy file> \
--output-path <name your reference taxonomy .qza file file> \
--input-format HeaderlessTSVTaxonomyFormat

7 PR2 reference database
The PR2 database is an 18S RNA protist database with additional data from metazoa,
fungi, and plants (Guillou et al. 2013). They have developed an interactive pr2-primer
database where you can download primer sets and evaluate against the database as well
as testing your own primers and primer sets. The database is accessible through a website
interface8 and an R package.

7mare-mage.weebly.com
8app.pr2database.org/pr2-database

Síða 10 av 20 Taxonomic classifiers

https://mare-mage.weebly.com
https://mare-mage.weebly.com
https://app.pr2database.org/pr2-database
https://app.pr2database.org/pr2-database

7.1. Downloading reference data

Here we describe how to download reference sequences and taxonomy files from PR29.

7.1 Downloading reference data
The PR2 reference database can be found at the database link above. You can filter the
data if you are interested in specific taxa, but we downloaded the full database from the
"Download full database" tab. This has download links for fasta and tax files that are
formatted in a way that is suitable for Qiime2 import.

Navigate to your working directory of choice.

[1]: %cd <your working directory>

Import your downloaded taxonomy and reference sequence files.

[2]: !qiime tools import \
--type 'FeatureData[Taxonomy]' \
--input-path <your reference taxonomy file> \
--input-format HeaderlessTSVTaxonomyFormat \
--output-path <name your reference taxonomy .qza file>

[3]: !qiime tools import \
--type 'FeatureData[Sequence]' \
--input-path <your reference sequence file> \
--output-path <name your reference sequence .qza file>

8 BOLD reference database

The Barcode of Life Data System (BOLD) is a web based platform for integrated
assembly and use of DNA barcode data (ratnasingham_span_2007). For animal
identification it focuses on the mitochondrial gene (COI). In addition it contains ITS, rbcl
and matK barcodes for fungi and plant identification. The system provides opportunities
for selecting relevant reference sequences based on various criteria such as geography and
taxonomy.

In this chapter, we describe how you can download and use the BOLD reference database10.
We have used it to produce classifiers for fish and macroalgae, but we will keep the guide
here as general as possible. We will describe how to extract the taxa of interest from your
downloaded data and create files suitable for importing into Qiime2.

9pr2-database.org
10boldsystems.org

Pipeline v2 Síða 11 av 20

https://pr2-database.org
https://boldsystems.org

8. BOLD reference database

8.1 Downloading reference data
Begin by downloading the BOLD snapshot of your choice. These are created regularly,
and can be found here11. We recommend that you use one of the historical snapshots, as
these can be cited. In this document, we use the March 2023 snapshot.

8.1.1 Extracting desired taxa
Create a list of search terms defining the taxa that you would like to extract from the
downloaded data. In this example, we are interested in Macrophyta, so we have chosen
Chlorophyta, Phaeophyceae, and Rhodophyta. Ensure that the taxon that you choose
exists in the BOLD database, as not all taxonomic levels are included.
We then use pandas to create a dataframe containing the lines where one of the search
terms appears.

[]: search_terms = ["Chlorophyta", "Phaeophyceae", "Rhodophyta"]
primer_terms = ["COI-5P","COI-3P"]

import pandas as pd

with open('BOLD_Public.31-Mar-2023.tsv', 'r', encoding='utf-8') as␣
↪→database:

header = next(database).strip().split('\t')
df = pd.DataFrame(columns=header)

for line in database:
values = line.strip().split('\t')

if len(values) != len(header):
values += [''] * (len(header) - len(values))

if any(term in values for term in primer_terms):
if any(term in values for term in search_terms):

df = df.append(dict(zip(header, values)),␣
↪→ignore_index=True)

df.to_csv("Tari/BOLD_macrophyta.31-Mar-2023_COI.tsv", index=None,␣
↪→sep='\t')

8.1.2 Creating reference sequence and taxonomy files
The following creates the taxonomy tsv file that Qiime2 imports for use in building a
classifier.
Start by defining the path to your files; that is input and output files. The input file
should be your taxon filtrated BOLD release file.

11boldsystems.org/index.php/datapackages

Síða 12 av 20 Taxonomic classifiers

http://www.boldsystems.org/index.php/datapackages

8.1. Downloading reference data

Define the columns from the BOLD release file that you want to use. For Qiime2 import,
you want columns 1 and 2 in addition to all of the columns that contain the taxonomy
information - here defined as range(9-16).
The code then opens the input and output files and creates reader and writer objects for
the files and defines the header.
Finally, the code iterates through all of the lines in the dataset and extracts the desired
columns and writes it to the predefined output file.

[1]: import csv

input_file_path = 'BOLD_macrophyta.31-Mar-2023_COI.tsv'
output_file_path = 'BOLD_macrophyta_COI_taxon.tsv'

columns_to_extract = [0,1]
columns_to_extract.extend(range(9, 16))

with open(input_file_path, 'r', newline='') as input_file,␣
↪→open(output_file_path, 'w', newline='') as output_file:

csv_reader = csv.reader(input_file, delimiter='\t')
csv_writer = csv.writer(output_file, delimiter=';')

header = next(csv_reader)

for row in csv_reader:
extracted_data = [row[i] for i in columns_to_extract]
csv_writer.writerow(extracted_data)

The following code cleans up the output .tsv in the following way:

1. Replace the first “;” in the file with a “-”. This combines the first two columns from
the original dataset to make a unique identifier.

2. Replace the next “;” with a TAB delimiter. This ensures that the tsv has the correct
format, which is an identifier followed by the taxonomy where the taxonomy is
separated from the identifier with a TAB and each level in the taxonomy is separated
by semi-colons.

3. Finally, any case of “None” is removed from the file, again in order to conform to
Qiime2 requirements.

[]: !sed 's/;/-/' BOLD_macrophyta_COI_taxon.tsv >␣
↪→BOLD_macrophyta_COI_taxonomy.tsv

[]: !sed 's/;/\t/' BOLD_macrophyta_COI_taxonomy.tsv >␣
↪→BOLD_macrophyta_COI_taxonomy2.tsv

[]: !sed 's/None//g' BOLD_macrophyta_COI_taxonomy2.tsv >␣
↪→BOLD_macrophyta_COI_taxonomy3.tsv

The following constructs the fasta file for Qiime2 through a series of terminal code.

Pipeline v2 Síða 13 av 20

8. BOLD reference database

First, the three columns containing the relevant information are written to separate files.
These are the first two columns as in the taxonomy file, which are used to create the
identifier and the third column contains the sequences.

[]: !awk -F'\t' '{print $1 > "processid1.txt"; print $2 > "sampleid1.txt";␣
↪→print $52 > "sequences1.txt"}' BOLD_macrophyta.31-Mar-2023_COI.tsv

Several times throughout the process, it is a good idea to look at the data, to ensure that
the code does what is expected.

[]: with open("sequences1.txt") as input_file:
head = [next(input_file) for i in range(20)]

print(head)

The two identifier columns are put together with a “-” separator.

[]: !paste -d'-' processid1.txt sampleid1.txt > identifiers.txt

[]: with open("identifiers.txt") as input_file:
head = [next(input_file) for i in range(10)]

print(head)

The sequences and the identifiers occupy alternating lines in a fasta file, so a ‘\n’ is added
in the paste command.

[]: !paste -d'\n' identifiers2.txt sequences2.txt > refseqs_nu.fasta

This tidies up the fasta file in order to approach the correct final formatting.
It removes the first two lines, which were the header lines and then adds a >to every odd
line

[]: input_file_path = 'refseqs_nu.fasta'
output_file_path = 'refseqs2_nu.fasta'

with open(input_file_path, 'r') as file:
lines = file.readlines()

lines = lines[2:]

for i in range(len(lines)):
if i % 2 == 0:

lines[i] = '>' + lines[i]

with open(output_file_path, 'w') as file:
file.writelines(lines)

This replaces “-” with nothing globally, but only in the lines that contain the sequences.
This is necessary as the Qiime2 import function we want to use will not accept dashes.

Síða 14 av 20 Taxonomic classifiers

[]: !sed -e "/^[^>]/s/[I-]//g" refseqs2_nu.fasta > reference_sequences_nu.
↪→fasta

At this point, the reference sequence file ought to be ready for import into Qiime2.
However, there may be an issue relating to duplicate records. When building the classifier,
Qiime2 will return an error if there are duplicate records. Therefore, if you find you
encounter this problem, some decisions need to be made. Sometimes the duplicates are
"real" duplicates with the same sequence and identifier. Other times, the sequences do not
match, but the identifier is the same. In these cases, one might either delete one of the
sequences or add more information to the identifier in order to keep both sequences. This
must be done both in the taxonomy file and the fasta file, or - even better - in the release
file before the two separate files are made.

[]: !qiime tools import \
--type FeatureData[Sequence] \
--input-path reference_sequences_nu.fasta \
--output-path macrophyta_refseqs.qza

[]: !qiime tools import \
--type FeatureData[Taxonomy] \
--input-path BOLD_macrophyta_COI_taxonomy3.tsv \
--output-path macrophyta_tax.qza \
--input-format HeaderlessTSVTaxonomyFormat

9 Reference data filtration and cleanup

Once you have your reference sequence and taxonomy .qza files, you can start the process
of cleaning them up, so that you can build your classifiers. Some of the steps here
are done to decrease the size of your reference data so that building the classifier will
be faster (or in some cases, possible) whereas other steps are done to maximise the
quality of the classifier. It is not required to perform all of the steps and the order of
the various steps in the process is not pre-determined. We have arranged the different
cleanup steps according to computer power requirements so that the less requiring pro-
cesses are first to reduce the amount of data before the more demanding parts are initiated.

In order to ensure that your .qza files are ok, you can validate them using the following
code.

[]: !qiime tools validate <your .qza file here>

You can then start by culling sequences that don’t live up to certain minimal quality
standards. A suitable starting place is to limit the number of degenerates to 5 and the
homopolymer length to 8. However, you should set these to what you think is most
suitable for your data. As going through your reference sequences to find problematic
ones is quite resource heavy, it can help to specify that you would like to use more than
one core, if you have more available.

Pipeline v2 Síða 15 av 20

9. Reference data filtration and cleanup

[5]: !qiime rescript cull-seqs \
--i-sequences <your reference sequence .qza file> \
--p-num-degenerates <number of degenerates> \
--p-homopolymer-length <maximum homopolymer length> \
--p-n-jobs <desired number of threads> \
--o-clean-sequences <name your culled sequences .qza file>

You can also remove any sequences that are shorter than some specified minimum. This
will depend on the type of sequences that you are using, but it is a good idea to remove
short sequences.

[6]: !qiime rescript filter-seqs-length \
--i-sequences <your reference sequences .qza file> \
--p-global-min <minimum sequence length> \
--o-filtered-seqs <name your filtered sequences .qza file> \
--o-discarded-seqs <name your discarded sequences .qza file>

Here is a filter that allows you to set sequence length based on individual taxa. You can
also filter taxa out entirely by not mentioning them in "-p-labels". You should specify a
minimum sequence length for each taxa, which is why we have 900 (for Archaea) and
1200 (for Bacteria).

[]: !qiime rescript filter-seqs-length-by-taxon \
--i-sequences <your reference sequences .qza file> \
--i-taxonomy <your taxonomy .qza file> \
--p-labels Archaea Bacteria \
--p-min-lens 900 1200 \
--o-filtered-seqs <name your filtered sequences .qza file> \
--o-discarded-seqs <name your discarded sequences .qza file>

Ensure that you dereplicate your files. This will substantially decrease the size of your
reference data and you can most likely dereplicate several times depending on the order
that you decide to carry out these cleanup steps. Removing duplicates will make any
other cleanup action that you do faster.
Here you dereplicate the sequences. We have chosen the ‘uniq’ method because this will
keep identical sequences with different taxonomies. This is useful when we want to build
a weighted classifier, as the weights can help determine where the sequence ought to be
classified. Other options include “Last common ancestor” (lca) where the closest common
ancestor in the two taxonomies with matching sequences is chosen and “majority” where
the taxonomy with a majority of identical sequences is assigned to the sequence.
We have provided the –p-rank-handles line for your convenience. The ranks listed are
default, but you can change them if you like.

[7]: !qiime rescript dereplicate \
--i-sequences <your filtered sequences .qza file> \
--i-taxa <your reference taxonomy .qza file> \
--p-mode 'uniq' \
--p-threads <desired number of threads> \

Síða 16 av 20 Taxonomic classifiers

--p-rank-handles 'domain' 'phylum' 'class' 'order' 'family' 'genus'␣
↪→'species' \
--o-dereplicated-sequences <name your dereplicated sequences .qza file>␣

↪→\
--o-dereplicated-taxa <name your dereplicated taxonomy .qza file>

Filter the sequences based on your primers to reduce the data that you will use to build
the classifier. This is time consuming and you can define the number of threads to use
based on your system. There is some discussion about whether filtering on primer is a
good idea or not. You may lose good data, so consider whether you want to include this
step or not. Here12 is what the Qiime2 documentation says on the matter and here13 is
a really good description of how to avoid some of the pitfalls when doing this kind of
filtration written by Mike Robeson.
If you do filter, don’t forget to dereplicate again before you build your classifier.

[]: !qiime feature-classifier extract-reads \
--i-sequences <your refseq .qza file> \
--p-f-primer <your forward primer sequence> \
--p-r-primer <your reverse primer sequence> \
--p-n-jobs <your desired threads> \
--o-reads <name your primer filtrated refseqs .qza file>

10 Constructing the classifier

There are two comonly used methods for constructing a classifier in Qiime2. One uses the
"feature-classifier" suit of commands whereas the other is in the "rescript" plugin.
"feature-classifier fit-classifier-naive-bayes" will construct a classifier, but it will not evaluate
the quality of the classifier that you have built. On the Qiime2 forums, there are tutorials,
which will describe how to evaluate your classifier, but we will not go further into that
here.
"rescript evaluate-fit-classifier" will construct a classifier and return an evaluation .qzv.
It will also return an observed taxonomy, which you can compare to the downloaded
taxonomy. However, this method is very resource heavy. It will particularly use a lot of
RAM, so if your reference data are large or your computer is limited in RAM you may
fail to complete construction of your classifier.

We recommend you try both methods and decide for yourself, which works best for your
purposes.

Below is the less resource heavy "fit-classifier-naive-bayes". This will take some time to
complete, perhaps up to half an hour.

12https://docs.qiime2.org/2023.9/tutorials/feature-classifier/
13https://forum.qiime2.org/t/using-rescripts-extract-seq-segments-to-extract-reference-sequences-

without-pcr-primer-pairs/23618

Pipeline v2 Síða 17 av 20

https://docs.qiime2.org/2023.9/tutorials/feature-classifier/
https://forum.qiime2.org/t/using-rescripts-extract-seq-segments-to-extract-reference-sequences-without-pcr-primer-pairs/23618

10. Constructing the classifier

[]: !qiime feature-classifier fit-classifier-naive-bayes \
--i-reference-reads <your reference sequences> \
--i-reference-taxonomy <your reference taxonomy> \
--o-classifier <name your classifier>

Below is the more resource heavy "evaluate-fit-classifier"
It is possible to run part of this process in parallel, but most of it will run on a single
thread. This function is quite demanding, particularly in terms of RAM, so it is important
to ensure that your input data for the classifier does not contain too many unnecessary
sequences or taxa. Expect to run this over night, though it depends on the hardware
available to you and how much you have been able to trim your input data.

[]: !qiime rescript evaluate-fit-classifier \
--i-sequences <your filtered refseq .qza file> \
--i-taxonomy <your filtered taxonomy .qza file> \
--p-n-jobs <your desired threads> \
--o-classifier <name your classifier .qza file> \
--o-evaluation <name your classifier evaluation .qzv file> \
--o-observed-taxonomy <name your observed taxonomy .qza file>

10.1 Constructing a weighted classifier
There is a Qiime2 plugin that allows you to create weights based on the type of sample
that you have in order to possibly improve the accuracy of your classifier. This is
"q2-clawback" and at the moment it is particularly suitable for bacterial communities or
microbiomes. We base the following on the tutorial written by the creators of clawback
and posted on the Qiime2 forums14. Using this plugin will allow you to weigh the classifier
on, for example whether the sample is for an animal gut or from a water sample. The
plugin collects data from Qiita (Gonzalez et al. 2018) and bases the weights on this
metadata.

First we query Qiita to get the most recent data.

[]: !qiime clawback summarize-Qiita-metadata-category-and-contexts \
--p-category empo_3 \
--o-visualization available_empo3.qzv

Clawback works with feature-classifier produced classifiers, so we will construct a Silva
classifier to use as an example for how the process works.

[]: !qiime feature-classifier fit-classifier-naive-bayes \
--i-reference-reads silva-138.1-ssu-nr99-seqs-derep-uniq.qza \
--i-reference-taxonomy silva-138.1-ssu-nr99-tax-derep-uniq.qza \
--o-classifier silva-unweighted-138.1-ssu-nr99-classifier.qza

Once your unweighted classifier has been constructed, you can create the weights.

14forum.qiime2.org/t/using-q2-clawback-to-assemble-taxonomic-weights/5859

Síða 18 av 20 Taxonomic classifiers

https://forum.qiime2.org/t/using-q2-clawback-to-assemble-taxonomic-weights/5859

References

Here, you need to input an unweighted classifier, a reference taxonomy and reference
sequences. Again, we are using our Silva data as an example.
We specify that we want the metadata from Empo 3 and that we want the classifier
weighed towards animal skin. As our animals are fish, we are not sure how suitable this
weighing scheme is, and your mileage may vary. Also, bear in mind that type of sample
contains varying amounts of data, and some data sets may be too small to produce useful
weights.
Finally, we pick a context. We want one high on the list, to ensure we have a lot of data
to base the weights on, and we want long sequences if we can have them. At the moment,
the "Deblur_2021.09-Illumina-16S-V4-150nt-ac8c0" context is the best one to use as has
is the longest (150nt) 16S sequence variants (deblur) within the list produced by Qiita.
This will most likely change in future.

[]: !qiime clawback assemble-weights-from-Qiita \
--i-classifier silva-unweighted-138.1-ssu-nr99-classifier.qza \
--i-reference-taxonomy silva-138.1-ssu-nr99-tax-derep-uniq.qza \
--i-reference-sequences silva-138.1-ssu-nr99-seqs-derep-uniq.qza \
--p-metadata-key empo_3 \
--p-metadata-value "Animal surface" \
--p-context Deblur_2021.09-Illumina-16S-V4-150nt-ac8c0b \
--o-class-weight silva-animal-surface-weights.qza

Once the weights have been created, you can build a new classifier using “feature-classifier”
and this time with the added input of a weights .qza file.

[]: qiime feature-classifier fit-classifier-naive-bayes \
--i-reference-reads silva-138.1-ssu-nr99-seqs-derep-uniq.qza \
--i-reference-taxonomy silva-138.1-ssu-nr99-tax-derep-uniq.qza \
--i-class-weight silva-animal-surface-weights.qza \
--o-classifier silva-animal-surface-138.1-ssu-nr99-classifier.qza

Now we have two classifiers, one weighted and one unweighted. When classifying your
data using a weighted classifier, do ensure that you are classifying data from a suitable
substrate. This may mean that you need to filter your data based on sample metadata
before or during your process.

References
Benson, Dennis A., Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J.

Lipman, James Ostell, and Eric W. Sayers. 2013. “GenBank.” [in eng]. Place: England,
Nucleic acids research 41, no. Database issue (January): D36–42. issn: 1362-4962
0305-1048. https://doi.org/10.1093/nar/gks1195.

Bokulich, Nicholas A, Benjamin D Kaehler, Jai Ram Rideout, Matthew Dillon, Evan
Bolyen, Rob Knight, Gavin A Huttley, and J Gregory Caporaso. 2018. “Optimizing
taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-
feature-classifier plugin.” Publisher: BioMed Central, Microbiome 6 (1): 90.

Pipeline v2 Síða 19 av 20

https://doi.org/10.1093/nar/gks1195

References

Bolyen, Evan, Jai Ram Rideout, Matthew R. Dillon, Nicholas A. Bokulich, Christian
C. Abnet, Gabriel A. Al-Ghalith, Harriet Alexander, et al. 2019. “Reproducible,
interactive, scalable and extensible microbiome data science using QIIME 2.” Nature
Biotechnology 37 (8): 852–857. issn: 1546-1696. https://doi.org/10.1038/s41587-019-
0209-9.

Gonzalez, Antonio, Jose A. Navas-Molina, Tomasz Kosciolek, Daniel McDonald, Yoshiki
Vázquez-Baeza, Gail Ackermann, Jeff DeReus, et al. 2018. “Qiita: rapid, web-enabled
microbiome meta-analysis” [in en]. Nature Methods 15, no. 10 (October): 796–798.
issn: 1548-7091, 1548-7105. https://doi.org/10.1038/s41592-018-0141-9.

Guillou, Laure, Dipankar Bachar, Stéphane Audic, David Bass, Cédric Berney, Lucie
Bittner, Christophe Boutte, et al. 2013. “The Protist Ribosomal Reference database
(PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated
taxonomy.” [in eng]. Place: England, Nucleic acids research 41, no. Database issue
(January): D597–604. issn: 1362-4962 0305-1048. https://doi.org/10.1093/nar/gks11
60.

Kaehler, Benjamin D, Nicholas Bokulich, Daniel McDonald, Rob Knight, J Gregory
Caporaso, and Gavin A Huttley. 2019. “Species abundance information improves
sequence taxonomy classification accuracy.” Nature Communications 10 (4643).

Leray, Matthieu, Nancy Knowlton, and Ryuji J. Machida. 2022. “MIDORI2: A
collection of quality controlled, preformatted, and regularly updated reference
databases for taxonomic assignment of eukaryotic mitochondrial sequences.” _Eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/edn3.303, Environmental DNA 4
(4): 894–907. https://doi.org/https://doi.org/10.1002/edn3.303.

Pandas development team, The. 2020. pandas-dev/pandas: Pandas, February. https://doi
.org/10.5281/zenodo.3509134.

Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza,
Jorg Peplies, and Frank Oliver Glockner. 2013. “The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools.” Publisher: Oxford
University Press, Nucleic Acids Res 41 (Database issue): D590–6.

Robeson, Michael S, Devon R O’Rourke, Benjamin D Kaehler, Michal Ziem-
ski, Matthew R Dillon, Jeffrey T Foster, and Nicholas A Bokulich. 2020.
“RESCRIPt: Reproducible sequence taxonomy reference database manage-
ment for the masses.” Publisher: Cold Spring Harbor Laboratory _eprint:
https://www.biorxiv.org/content/early/2020/10/05/2020.10.05.326504.full.pdf,
bioRxiv, https://doi.org/10.1101/2020.10.05.326504.

Van Rossum, Guido, and Fred L Drake Jr. 1995. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam.

Síða 20 av 20 Taxonomic classifiers

https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1093/nar/gks1160
https://doi.org/10.1093/nar/gks1160
https://doi.org/https://doi.org/10.1002/edn3.303
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1101/2020.10.05.326504

	Introduction
	Setup
	Silva reference database
	Downloading reference data

	NCBI GenBank reference database
	Downloading the data
	Filtration and cleanup of reference data

	MIDORI2 reference database
	Downloading reference data
	Using the online classifier

	Mare-MAGE reference database
	Downloading reference data

	PR2 reference database
	Downloading reference data

	BOLD reference database
	Downloading reference data

	Reference data filtration and cleanup
	Constructing the classifier
	Constructing a weighted classifier

	References

